Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blanchard, Jeffrey Lawrence (Ed.)ABSTRACT Microorganisms play a central role in sustaining soil ecosystems and agriculture, and these functions are usually associated with their complex life history. Yet, the regulation and evolution of life history have remained enigmatic and poorly understood, especially in protozoa, the third most abundant group of organisms in the soil. Here, we explore the life history of a cosmopolitan species—Colpoda steinii. Our analysis has yielded a high-quality macronuclear genome forC. steinii, with size of 155 Mbp and 37,123 protein-coding genes, as well as mean intron length of ~93 bp, longer than most other studied ciliates. Notably, we identify two possible whole-genome duplication events inC. steinii, which may account for its genome being about twice the size ofC. inflata’s, another co-existing species. We further resolve the gene expression profiles in diverse life stages ofC. steinii, which are also corroborated inC. inflata. During the resting cyst stage, genes associated with cell death and vacuole formation are upregulated, and translation-related genes are downregulated. While the translation-related genes are upregulated during the excystment of resting cysts. Reproductive cysts exhibit a significant reduction in cell adhesion. We also demonstrate that most genes expressed in specific life stages are under strong purifying selection. This study offers a deeper understanding of the life history evolution that underpins the extraordinary success and ecological functions of microorganisms in soil ecosystems.IMPORTANCEColpodaspecies, as a prominent group among the most widely distributed and abundant soil microorganisms, play a crucial role in sustaining soil ecosystems and promoting plant growth. This investigation reveals their exceptional macronuclear genomic features, including significantly large genome size, long introns, and numerous gene duplications. The gene expression profiles and the specific biological functions associated with the transitions between various life stages are also elucidated. The vast majority of genes linked to life stage transitions are subject to strong purifying selection, as inferred from multiple natural strains newly isolated and deeply sequenced. This substantiates the enduring and conservative nature ofColpoda’s life history, which has persisted throughout the extensive evolutionary history of these highly successful protozoa in soil. These findings shed light on the evolutionary dynamics of microbial eukaryotes in the ever-fluctuating soil environments. This integrative research represents a significant advancement in understanding the life histories of these understudied single-celled eukaryotes.more » « less
-
Abstract Light beams carrying orbital angular momentum (OAM) in the form of optical vortices have attracted great interest due to their capability for providing a new dimension and approach to manipulate light–matter interactions. Recently, plasmonics has offered efficient ways to focus vortex beams beyond the diffraction limit. However, unlike in the visible and near‐infrared regime, it is still a big challenge to realize plasmonic vortices at far‐infrared and even longer wavelengths. An effective strategy to create deep‐subwavelength near‐field electromagnetic (EM) vortices operating in the low frequency region is proposed. Taking advantage of the asymmetric spatial distribution of EM field supported by a metallic comb‐shaped waveguide, plasmonic vortex modes that are strongly confined in a well‐designed deep‐subwavelength meta‐particle with desired topological charges can be excited. Such unique phenomena are confirmed by the microwave experiments. An equivalent physical model backed up by the numerical simulations is performed to reveal the underlying mechanism of the plasmonic vortex generation. This spoof‐plasmon assisted focusing of EM waves with OAM may find potentials for functional integrated elements and devices operating in the microwave, terahertz, and even far‐infrared regions.more » « less
An official website of the United States government
